
Resolution Sensitivity of a Compound Terrain Derivative 
as Computed from LiDAR-Based Elevation Data 

Ralph K. Straumann and Ross S. Purves 

Department of Geography, University of Zurich – Irchel,  
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 

{rsm, rsp}@geo.unizh.ch 

Abstract. New technologies such as Light Detection And Ranging (LiDAR) 
provide high resolution digital elevation data. These data offer new possibilities 
in the field of terrain modelling and analysis. However, not very much is known 
about the effects when these data are used to compute broadly applied terrain 
derivatives. In this paper the sensitivity of the Topographic Wetness Index 
(TWI) and its two constituting components gradient and Specific Catchment 
Area (SCA) regarding the resolution of LiDAR-based elevation data is exam-
ined. For coarser resolutions a shift in the TWI distribution to higher values is 
noted. TWI distributions at different resolutions differ significantly from each 
other. These findings have an impact on aspatial and spatial modelling based on 
the TWI. 

Keywords: Terrain derivatives, Topographic Wetness Index, resolution sensi-
tivity, LiDAR 

1   Introduction 

In recent years new technologies for acquiring high resolution digital elevation data 
have become increasingly widely available, e.g. LiDAR [1]. For example, in Swit-
zerland LiDAR data are being collected for all areas below 2000 m. This rapid in-
crease in the availability of such high resolution data provides an opportunity and a 
need for GIScience to reexamine the implications of high resolution data. This paper 
investigates the effects of such data in the field of terrain analysis by exploring a 
widely used compound topographic index, the Topographic Wetness Index (TWI). 
The TWI is defined as the natural log of the ratio of the Specific Catchment Area 
(SCA; upslope area per unit contour length) As and the tangent of the gradient at a 
given location [2]: 

 

( ) .tanln),( βsyx ATWI =  (1) 

 
One of the most common uses of TWI is within the rainfall-runoff model TOP-
MODEL [3]. Since TOPMODEL is semi-distributed there is no difference in the 
computational effort, after calculation of the TWI, between a model run at a resolu-
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tion of 1000 m or 1 m. As a result, various studies have examined the use of TOP-
MODEL at a range of resolutions [4-10], though to our knowledge only one paper has 
applied LiDAR-based elevation data with resolutions of ~2 m [11]. Much existing 
research into the resolution sensitivity of the TWI has been performed in order to 
understand the resolution sensitivity of TOPMODEL and has therefore focused only 
on the sensitivity of the (aspatial) distribution of the TWI, since this is the only TWI 
property used in TOPMODEL. 

However, use of the TWI is not confined to TOPMODEL. For example, the TWI 
has been used as an index to indicate potential saturated and unsaturated areas in a 
catchment and predict the distribution of local soil moisture [12], [13], [14]. TWI is 
also used as input data to predict spatially varying evapotranspiration, liability to 
erosion or nutrient transport [15], [16] and in the automatic delineation/classification 
of landforms [17], [18], [19], since it represents an intuitive notion of wetness or 
proneness to generate surface flow. 

Therefore this paper aims to not only analyse the resolution sensitivity of the TWI 
from a statistical point of view – as has been done in most TOPMODEL-related 
studies – but also to investigate the sensitivity of the spatial arrangement of the TWI. 

2   Previous Research on Resolution Sensitivity 

2.1   Gradient and Specific Catchment Area 

Gradient and aspect are the magnitude and direction respectively of the 1st derivative 
of a continuous surface representing elevation [20]. The Specific Catchment Area 
(SCA) is defined as catchment area per unit contour length and is an important vari-
able in hydrologic modelling [20], [21]. 

Of all terrain derivatives, gradient sensitivity to resolution has probably received 
the most attention within the GIScience community. For example, Vieux [22] ex-
plored the implications of smoothed and aggregated DEMs on gradient. A DEM with 
30 m resolution was smoothed and downsampled to resolutions of 90 m, 150 m and 
210 m using nearest neighbour interpolation. Vieux found that both smoothing and 
aggregation of the DEM reduced the spatial variability of both elevation and gradient 
values. For coarser resolutions lower mean and maximum gradient resulted. 

Gao [23] derived gradient from DEMs with resolutions from 10 m to 60 m. For 
coarser resolutions steep gradients disappeared and intermediate gradient values be-
came dominant. Thompson et al. [24] and Claessens et al. [25] looked at the resolu-
tion sensitivity of both gradient and SCA for DEMs with resolutions of between 10 m 
and 30 m. Again, both authors report lower values of gradient for coarser resolutions. 
Furthermore, Claessens et al. [25] show that the minimum values of SCA are higher 
with coarser DEM resolutions since they are directly linked to resolution by the divi-
sion of the upslope area by contour length. The authors find “higher contribution of 
high specific catchment area values to the distribution” for coarser resolutions [25] 
and “lower values of ln(As) associated with the higher resolution DEM” [24] and thus 
underpin the study by Wilson et al. [26]. 
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Garbrecht and Martz [27] examined various hydrological properties such as total 
channel length, drainage density and mean link drainage area. They found that for 
these properties, “the grid size dependency is introduced by the inability of a DEM to 
accurately reproduce drainage features that are at the same scale as the spatial resolu-
tion of the DEM” [27]. 

2.2   Topographic Wetness Index 

The Topographic Wetness Index (TWI) is a compound terrain derivative. Kienzle [1] 
defines compound terrain derivatives as “terrain indices that combine two or more 
terrain attributes.” Other compound derivatives are for example total curvature (com-
bines plan and profile curvature) and the stream power index. 

Zhang and Montgomery [5] were among the first researchers who investigated the 
effects of different DEM resolutions on the TWI. They found that coarser DEM reso-
lutions lead to a decrease in the mean gradient and an increase in the (D8-based) mean 
SCA. They suggest the latter occurs simply because with lower resolution minimum 
SCA (the area of a single raster cell) increases. In general, higher resolutions lead to 
lower TWI values. They consider the implications of lower resolution on the spatial 
distribution of the TWI to be particularly important, since many details of the river 
network as well as of the drier slopes disappear. However, they suggest that for reso-
lutions of more than 10 m only a “marginal improvement in slope representation” 
occurs [5], although the real resolution of these data were probably less than the 
nominal resolution (c.f. §2.4). 

Bruneau et al. [6] observed a change in the shape of TWI statistical distributions 
that may affect model runs within TOPMODEL. “This non-linear effect of space 
resolution may be due to differing effects on the two variables [gradient, SCA] used 
in determining the topographic index” [6]. This change in the shape of the TWI distri-
bution was also reported by Saulnier et al. [8]. Kienzle [1] points out that in compara-
tive studies between several catchments the reported resolution sensitivity of the TWI 
has to be taken into account. Finally, Wolock and Price [4] reported that the spatial 
pattern of the TWI is, unsurprisingly, much more complex for finer resolutions than it 
is for coarse ones. 

2.3   TWI and High Resolution LiDAR Data 

Lane et al. [11] computed TWI from, and used TOPMODEL with, high resolution 
(2 m) LiDAR data. In model runs they found saturated areas in the catchment that 
were not connected with the stream network because of low values of TWI in inter-
mediate locations which persist even after large amounts of precipitation. At lower 
resolutions the number of these areas diminishes and the pattern of saturated areas be-
comes more coherent. Lane et al. [11] did not focus on TWI distribution but instead 
designed a TOPMODEL alternative, called the network-index approach, to overcome 
the shortcomings mentioned. 
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2.4   Nominal and Real Resolution 

In the context of research on the sensitivity of terrain derivatives to the resolution of 
elevation data sets the term ‘resolution’ needs to be carefully defined. “The spacing of 
the original data used to construct a DEM effectively limits the resolution of the 
DEM. Decreasing the size beyond the resolution of the original survey data does not 
increase the accuracy of the land surface representation of the DEM and potentially 
introduces interpolation errors” [5]. Thus, elevation data in the form of a raster have 
both a nominal and a real resolution. The former can be stated explicitly as the size of 
the raster cells. The latter can be thought of as the minimum appropriate resolution as 
defined by Zhang and Montgomery [5]. In assessing the sensitivity of terrain deriva-
tives to resolution, it is important to be clear as to whether the resolution in question is 
nominal or real. For example, Kienzle [1] showed that gradient and TWI exhibited 
greater sensitivity when derived from a DEM with finer real resolution. 

In previous research on the sensitivity of the TWI and TOPMODEL to resolution a 
wide range of nominal resolutions have been derived from varying source datasets 
using a variety of interpolation methods (Table 1).  

Table 1. Data source characteristics in resolution sensitivity studies of TWI/TOPMODEL. 
Source abbreviations: CMx: Contour map with x m elevation distance, AP: Aerial photogram-
metry, DEM: Digital elevation model with x m (or x'': x arcseconds) resolution. 

Study Source scale Source Resolutions Notes 
(1:24'000) DEM30 30 m, 90 m Wolock, 

Price [4] (1:250'000) DEM3'' 90 m 
Other resolutions than 30 m derived 
by bilinear resampling 

1:4'800 CM6  Zhang, 
Montgomery 
[5] “low altitude” AP 

2-90 m 
~1pt/100m2 

Bruneau et 
al. [6] 1:10'000 CM 20-100 m  

Franchini et 
al. [7] n. a. DEM60 60-480 m  

Saulnier et 
al. [8] 1:25'000 CM10 20-120 m 

Other resolutions than 20 m derived 
by subsampling 20 m DEM without 
aggregation 

Brasington, 
Richards [9] 1:5'000 CM10 20-500 m  

Higy, Musy 
[10] (1:25'000) DEM25 25-300 m Other resolutions than 25 m derived 

by resampling the 25 m DEM 
Lane et al. 
[11] n. a. LiDAR 2-64 m  

1:60'000 AP 
Points at 100 m intervals and sur-
face specific points (⅓ to ⅔ of all 
points), 103-850pts/km2 Kienzle [1] 

n. a. DEM10 

5-100 m 

 
 
This study aims to investigate the resolution sensitivity of the TWI with data of very 
high nominal resolution. The data in this study are not derived from paper maps, 
contour line data or aerial photogrammetry (as is often the case with other studies), 
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but are based on densely sampled LiDAR ground data, so that at all of the resolutions 
analysed the real resolution of the data is higher than the nominal resolution of the 
DEM. In the remainder of this paper, we use the term ‘resolution’ to refer to nominal 
resolution.  
Specific questions for investigation within this study can be set out as follows: 

• How do the spatial patterns of SCA, gradient and TWI distribution vary with 
resolution? 

• How do the statistical TWI distributions vary at different resolutions? 
• What conclusions can be inferred for the use of the TWI within the TOP-

MODEL framework and other domains? 
 
The following section gives an overview of the methodology applied. This is followed 
by an analysis of the influence of the digital elevation model (DEM) resolution on the 
spatial pattern of SCA, gradient and TWI before the statistical properties of these 
terrain derivatives are discussed and a set of implications for applications and other 
research are set out. 

3.   Methodology 

The study area lies in the region of Boltigen north of the Swiss Alps, west of Interla-
ken. The mountainous catchment of the Wueestenbach river used in the TWI investi-
gation is approximately 11 km2 and confined by steep slopes at the valley head, while 
in some parts of the catchment there are cliffs. 

In order to answer the research questions posed, the following methodology was 
adopted. DEMs of resolutions of 2.5, 5, 10, 20 and 40 m were independently gener-
ated from filtered ground LiDAR data (~0.7 points/m2). IDW (Inverse Distance 
Weighting) with a weighting exponent of 2 was used as interpolator. The number of 
points used in interpolation was chosen such that – statistically – all points used in the 
interpolation lay within the cell being interpolated (Table 2). 

Table 2. IDW interpolation parameters 

DEM resolution Number of points Maximum distance threshold 
2.5 m 5 10 m 
5 m 20 10 m 

10 m 70 20 m 
20 m 280 40 m 
40 m 1’120 80 m 

 
Subsequently, the TWI was calculated using ArcGIS [28] and SAGA GIS [29]. The 
computation included a fill operation and the use of a multiple flow direction algo-
rithm (MFD) according to Quinn et al. [30], [31]. This approach was recommended 
by Beven [2]. Multiple flow direction algorithms can account for divergent (sheet) 
flow, while single flow direction algorithms, e.g. D8, model only convergent flow 
often resulting in a multitude of parallel stream lines on hill slopes (cf. Fig. 1). The 
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MFD gives the catchment or upslope area of each point in the watershed. The catch-
ment area per unit contour length was derived from this by applying a division by 
contour length. Contour lengths were computed l = 0.427 · resolution, where 0.427 is 
the mean of contour length for diagonal and cardinal neighbours [30], [31]. Gradient 
was computed by fitting a 2nd degree polynomial [32]. Because any method of calcu-
lating slope using eight neighbouring cells will tend to smooth gradients an additional 
form of gradient was calculated for the finest and the coarsest resolution called 
Weighted Downslope Gradient (WDG). In this calculation only lower neighbouring 
cells are considered. The gradient to each downslope neighbour is weighted according 
to: 

 

.tan/tan ∑=
i

iiiw ββ  (2) 

 
A minimum value of 0.001 was imposed on the subsequently calculated tangent of the 
gradient to avoid division by zero.  

 

 

Fig. 1. Flow accumulation based on flow directions by (a) D8 and by (b) MFD 
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4   Results and Discussion 

4.1   Spatial Distribution 

Specific Catchment Area. All resolutions of SCA (Fig. 2) exhibit a sensible pattern 
with a clear stream network and flow accumulated downslope thanks to the fill opera-
tion that was carried out on the DEM in advance. 

For relatively fine resolutions (below 5 or 10 m) the pattern of SCA is quite com-
plex. Even small channels and rills are represented forming a dendritical network of 
high SCA values especially on longer slopes (cf. location of arrow in Fig. 2e). 

The coarsening of the DEM resolution results in a loss of these fine details and 
higher SCA values are found only in medium-sized and large valleys. Smaller chan-
nels on hill slopes that are clearly depicted at finer resolutions become blurred. This 
can be seen in Fig. 3 which contains close-up views of the area highlighted by the 
arrow in Fig. 2e. SCA with 2.5 m resolution shows relatively homogenously distrib-
uted flow on the shoulder of the hill slope (upper left part of the depicted area). The 
surface flow than enters a very steep area of cliffs with very high gradients. Flow 
converges and is concentrated in rills and creases. Beneath the cliffs the hill slope 
once more becomes uniform and the water is dispersed over the entire area. This 
chain of processes is still, to some extent, visible in the SCA representation with 10 m 
but at 40 m the small scale morphometry of the terrain is completely lost and the cliffs 
are represented as a relatively uniform area of high gradient values. Thus the SCA 
does not represent channelled flow in the middle of the hill slopes and does not reach 
high values with respect to the background. 
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Fig. 2. Logarithm of Specific Catchment Area at (a) 2.5 m, (b) 5 m, (c) 10 m, (d) 20 m and 
(e) 40 m resolution 
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Fig. 3. Close-up view of Specific Catchment Area at (a) 2.5 m, (b) 10 m and (c) 40 m resolu-
tion; (d) photograph of the situation. The location of the depicted area is indicated by an arrow 
in Fig. 2e. 

Gradient. The spatial pattern of gradient is shown in Fig. 4a-e. High gradient values 
predominantly occur on the hill slope north of the main valley that runs along the 
southern catchment boundary. These regions of high gradient are indeed very steep 
slopes with outcropping cliffs with near vertical surfaces. North of these and at higher 
levels there are areas with low gradient values. The overall geomorphology is ade-
quately represented at all resolutions. Finer resolutions differ in the geomorphologic 
detail they exhibit and in the values of gradient that occur. The first assertion rises 
from the inspection of the hill slopes. These are to a certain level still properly de-
picted at coarser resolutions. With finer resolutions, however, more detailed features, 
for example, debris fans beneath cliffs are also represented. These features that are 
omitted at coarser resolutions result in locally very high gradient values in an already 
relatively steep environment. 

Fig. 4f shows the gradient approximated with the WDG method as described in §3. 
The spatial pattern of this gradient is noisier and depressions are wider as a result of 
the consideration of only the downslope neighbours of a cell. 



10      Ralph K. Straumann and Ross S. Purves 

 

Fig. 4. Gradient at (a) 2.5 m, (b) 5 m, (c) 10 m, (d) 20 m and (e) 40 m resolution; (f) gradient at 
2.5 m resolution according to WDG method 
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TWI. The spatial pattern of the resulting TWI at different resolutions is depicted in 
Fig. 5. Comparing the TWI rasters with the SCA and gradient rasters reveals a domi-
nance of the hydrological over the morphometric property. The TWI essentially forms 
a network of high values that closely resembles the SCA pattern. For fine resolutions 
again the fine creases and rills on the hill slopes can be distinguished in the TWI 
rasters. High TWI values in the valley bottoms are very strongly concentrated in 
channels of a width of one or more cells. Low gradient values next to these channels 
cannot compensate for low SCA values, hence the relatively strong contrast of TWI 
channel values with the environment. 

The reduction of detail in the process of lowering resolution is striking. This can be 
best seen from the perspective views in Fig. 6. In Fig. 6a hill slopes and the valley 
bottom are represented with very fine details. A path can be distinguished that runs 
across the hill slope in the foreground. Paths and roads are anthropogenic features that 
can significantly influence overland flow paths and as such their presence may be 
desired in input data for hydrological modeling. Approaches have been developed to 
retroactively incorporate such anthropogenic features in order to obtain more realistic 
overland flow paths [33], [34]. As can be seen from Fig. 6a the use of high resolution 
LiDAR data may allow such features to be directly modelled. 

On the slopes on both sides of the valley small bumps (terrain undulations, debris) 
can be observed. The valley bottom is very complex. The main channel that drains 
through it is narrow, with in some parts side channels joining it. Most of these chan-
nels are one or several cells (i.e. slightly over 2.5 m) wide. 

The complexity of the terrain diminishes in the representations with 10 m and 40 m 
resolution. Initially distinct features, for example the mound in the valley bottom 
(dark feature left of the centre of Fig. 6b) are still observed though finer details such 
as the unevenness of the hill slopes or the path are omitted. In general, the valley 
bottom is more level at coarser resolutions (cf. Fig. 7), and through the use of MFD 
(instead of D8) more prone to wider streams. Inflows from the slopes that were nar-
row channels at the finest resolution are now relatively broad branches of the stream 
network (at least 40 m, but also wider). The cliffs in the background are not so rugged 
anymore. It is important to note that the change in resolution does not only cause an 
increase in channel width as a function of resolution, but also because lower resolu-
tions result in less differentiated flow and thus wider channels where flow concen-
trates. 

Fig. 7 also illustrates that some hill slopes may be adequately represented with dif-
ferent resolutions. While the slope on the right (South) experiences barely any deg-
radation with coarser resolutions, the opposite side shows relatively pronounced dif-
ferences at differing resolutions. The hill slope on the right has itself a coarser scale 
than the one on the left. 
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Fig. 5. TWI at (a) 2.5 m, (b)  5 m, (c) 10 m, (d) 20 m and (e) 40 m resolution. The black line in 
(e) indicates the location of the profiles in Fig. 7. 
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Fig. 6. Perspective view of TWI at (a) 2.5 m, (b) 10 m and (c) 40 m resolution 

 

Fig. 7. Elevation profiles across a channel in the valley bottom 

4.2   Statistical Distribution 

Table 3 shows the statistical properties of the SCA distribution. Minimum and maxi-
mum SCA values converge with coarsening resolution. Minimum catchment area 
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values and hence SCA values are determined by the DEM resolution as Claessens et 
al. [25] pointed out. The former is simply resolution squared, while the latter under-
goes a division by contour length which is in turn determined by the resolution and 
some coefficient (constant across all resolutions). Division by contour length also af-
fects maximum SCA values. One single cell at the catchment outlet that receives all 
water (i.e. has a catchment area equal to the total catchment area) with a width of 1 m 
will automatically obtain a SCA value that is ten times higher than a cell with a width 
of 10 m. This effect influences all SCA values and is reflected by mean SCA value 
decreasing for coarser resolutions. At the same time the median, which is insensitive 
to extremes, and the quartile values increase. This reflects the shift in the obtainable 
minimum SCA values. In summary, in the upper parts of the catchment SCA of a 
coarse resolution has higher values than SCA of finer resolutions, while in the lower 
parts of the catchment the situation is inverted. 

Table 3. Statistics for Specific Catchment Area 

 Specific Catchment Area [m] 
Resolution Minimum Maximum Mean Stddev Median 

2.5 m 5.85 10'022'410 8'786.05 172'457.16 238.56 
5 m 11.71 4'996'783 8'683.48 126'308.21 309.34 

10 m 23.42 2'491'526 8'358.53 88'702.11 389.52 
20 m 46.84 1'232'313 7'893.18 59'461.81 492.10 
40 m 93.68 578'091 7'009.97 37'561.27 625.69 

 
Gradient also experiences a shift when resolution is changed as Table 4 shows. As 
expected, maximum and mean values of gradient are lower for coarser resolutions. 
All minimum values are 0° except the one at resolutions of 40 m. 

Table 4. Statistics for gradient 

 Gradient [°] 
Resolution Minimum Maximum Mean Stddev Median 

2.5 m 0 88.37 30.34 13.91 29.98 
5 m 0 86.67 30.17 13.29 30.12 
10 m 0 83.42 29.89 12.88 30.06 
20 m 0 77.71 29.30 12.56 29.70 
40 m 0.07 69.96 28.53 12.20 29.09 

2.5 m WDG 0 88.48 25.48 13.09 24.34 
40 m WDG 0 68.16 23.40 11.08 23.41 

 
The changes in the distribution of the SCA and gradient are reflected in the TWI, 
which is calculated according to equation (1).  

Table 4 also illustrates the statistical properties of gradient calculated using WDG. 
As can be seen the ranges of values are almost identical to the gradients calculated 
with a 2nd order polynomial of the same resolution. However, the peak of the distribu-
tions has shifted to lower values and hence the distributions are more right skewed. 
This affects the mean gradient value by approximately 5°. 

As can be seen from Fig. 8 the TWI distributions of different resolutions differ 
visually, and these differences have been shown by Mann-Whitney U tests to be sta-
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tistically significant. For coarser resolutions the shift to higher TWI values results in 
an increase of mean and median values with an increase in mean from 5.13 to 6.5 and 
median from 5.1 to 6.16. 

Additionally, there is a change in the shape of the TWI distribution, as Bruneau et 
al. [6] and Saulnier et al. [8] observed for resolutions between 20 m and 100 m and 
between 20 m and 120 m, respectively. 

For resolutions of 40 m relatively high TWI values dominate though, maximum 
values are nevertheless lower for coarser resolutions (Table 5). On the other hand the 
minimum TWI value is lower for finer resolutions. Both these effects seem to be (at 
least partially) caused by the behaviour of the SCA minimum and maximum values 
for changing resolution. The influence of gradient on the behaviour of the TWI is 
such, that lower gradient values for coarser resolutions generally foster higher TWI 
values for these resolutions. 

 

Fig. 8. Distributions of the TWI at different resolutions 

Table 5. Statistics for TWI 

 TWI 
Resolution Minimum Maximum Mean Stddev Median Skewness Kurtosis 

2.5 m -1.56 22.68 6.19 1.94 6.05 0.91 2.86 
5 m -0.31 19.87 6.47 1.88 6.29 1.14 3.31 
10 m 1.49 18.05 6.75 1.86 6.53 1.32 3.42 
20 m 2.59 16.82 7.06 1.86 6.76 1.42 2.99 
40 m 3.75 16.03 7.42 1.84 6.98 1.40 2.28 

2.5 m WDG -1.80 23.02 6.43 2.01 6.30 0.95 3.48 
40 m WDG 3.79 18.38 7.69 1.97 7.27 1.43 2.72 
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Table 5 also shows that the differences in gradient shown in Table 4 for different 
algorithms have little influence on TWI, again demonstrating the predominant influ-
ence of SCA. 

Surprisingly, in the present study TWI has negative minimum values for the reso-
lutions of 2.5 and 5 m (-1.56 and -0.31, respectively). The minimum TWI value for 
10 m resolution is positive (1.49). 

To the authors’ knowledge no occurrence of negative values is reported in the ex-
isting literature about the TWI. Two factors interact to allow the occurrence of such 
values: small specific catchment areas and high gradient values. Both these factors are 
more probable in DEMs of (very) fine resolution. As mentioned in the introductory 
section, most existing studies have investigated the behaviour of the TWI for DEMs 
of nominal resolutions down to 10 m. It is hence supposed the nominal (or the real 
resolution) of the DEMs used in these studies was too coarse for negative TWI values 
to occur and/or the topographies of the study areas were less pronounced than in the 
present study. Holko and Lepistö [35] did indeed apply TOPMODEL to a mountain-
ous catchment with a mean gradient similar to this study, but they used a DEM of 
100 m nominal resolution derived from a map of scale 1:10’000. Thus it is assumed 
that no negative TWI values resulted in their study. They do not state the TWI distri-
bution explicitly. 

Cells of a certain gradient with only a small area draining to them are prone to 
negative TWI values. A negative TWI value results when: 

 

( ) .arctan.tan.0tanln βββ <⇔<⇔< sss AAA  (3) 

 

 

Fig. 9. Critical values of gradient for negative TWI values. Data that lie inside the gray area re-
sult in negative TWI values. 

Fig. 9 shows the critical gradient that lets ( ) 0tanln =βsA  if sA  equals one grid 
cell, in relation to the DEM resolution used. Thus for a DEM of 1 m resolution a 
gradient value of 67° and for a DEM of 0.5 m resolution 50° would allow negative 
values to occur. Resolutions of this order of magnitude are well within the realm of 
the current generation of LiDAR. 
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5   Conclusions 

In this study we sought to explore the influence of resolution on a compound topo-
graphic index, the Topographic Wetness Index (TWI), derived from the Specific 
Catchment Area (SCA) and gradient. Our study used raw LiDAR data to derive ele-
vation models of a variety of resolutions using a simple interpolation method (IDW) 
and aimed to examine the dependency of TWI and its constituents on resolution. Such 
work is important, since as LiDAR data proliferates the assumption that higher reso-
lution is de facto better for modelling is proliferating. Furthermore, previous studies 
of the implications of changes in resolution on TWI have used data with a real reso-
lution (that is, the resolution of features likely to be resolved in the data) considerably 
less than the nominal resolution (the resolution reported for the data, independent of 
its derivation). This is the first key conclusion of our work, which stems from an 
examination of previous sensitivity tests – authors should report both nominal and 
real resolutions. 

Changing resolution influences the derived TWI in several ways. Lowering resolu-
tion affects both spatial and statistical distributions of gradient and SCA. From a spa-
tial point of view the loss of detail that occurs between resolutions of 2.5 and 40 m is 
striking. Detailed terrain features, such as rills, rocks and debris are omitted resulting 
in a shift in gradient values and hence TWI. Moreover, minor topographic elements in 
valley bottoms become blurred leading to flow path ambiguity and channel widening 
beyond that resulting from changes in minimum cell width alone. Furthermore, the 
degree of loss of detail is related to the scale at which features in the landscape mani-
fest themselves. This effect was well illustrated by a valley profile where small scale 
features dominated on one hill slope (suggesting a need for higher resolution data), 
whilst the opposing hill slope was well captured at all resolutions. These effects only 
became visible at higher resolutions, and reinforce the importance of multi-scale 
analyses, based on data with a high real resolution, similar to those carried out by 
Wood [36]. 

The distribution of the TWI at all resolutions was strongly dependent on the SCA, 
reflecting the importance of the choice of flow algorithm applied. The location of the 
highest TWI values remained similar for all resolutions. However, the distribution of 
the medium and low values is affected, primarily on relatively long hill slopes where 
at different resolutions quite distinct TWI patterns develop. 

From an aspatial, statistical viewpoint there are some pronounced differences be-
tween resolutions. Previous research on gradient, SCA and TWI sensitivity has been 
confirmed and underpinned with data whose real resolution is always higher than the 
nominal resolution at which the calculations are carried out. Additionally, comparison 
of TWI values derived from a 2nd degree polynomial and from an additional approach 
(Weighted Downslope Gradient) showed that although gradient values were sensitive 
to algorithm, their influence on TWI was limited. 

The behaviour of the SCA at different resolutions was primarily controlled by flow 
width or contour length and hence resolution. This control leads to lower minimum 
and higher maximum values for DEMs at fine resolutions. The behaviour of gradient 
and especially SCA are reflected in the resolution sensitivity of the TWI. The TWI 
distribution exhibits a shift to higher values for coarser resolutions and changes in the 
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shape of the distribution. This may lead to differences in the performance of TOP-
MODEL (cf. [37]). Specifically, coarser resolutions with lower mean TWI values ex-
hibit less subsurface flow and a smaller saturation deficit and thus tend to produce 
larger saturated areas and more surface runoff. However, approaches to deal with 
TWI resolution sensitivity within TOPMODEL through the use of scaling factors 
have been developed (cf. [7], [8]). 

However, when TWI and/or TOPMODEL are used to make spatial assertions, TWI 
resolution sensitivity gives rise to new problems. As was seen in the results section, 
the spatial patterns of the TWI and hence derived patterns of saturated and unsatu-
rated areas, evapotranspiration, liability to erosion or nutrient transport vary between 
different resolutions. More generally, TWI resolution sensitivity needs to be taken 
into account when working with thresholds, for example in the field of landscape 
classification, or when doing comparative studies in a data-driven situation, when at 
different locations DEMs of different resolutions are available. 
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